Mires and Peat (Feb 2020)
Natural isotopes support groundwater origin as a driver of mire type and biodiversity in Slitere National Park, Latvia
Abstract
Slitere National Park in Latvia is home to rich fens with many endangered and threatened plant species. This study aims to address how the hydrological systems affect vegetation biodiversity (cf. Wolejko et al. 2019) in the mire systems of the National Park: the base-rich inter-dune mires and extremely base-rich calcareous fens. Groundwater samples from these areas were collected for measurements of ion composition and natural isotopes of C, H and O. Also, we simulated groundwater flow paths from the highest local topographical point (a nearby sandy plateau) to the sea, and calculated the residence times of these groundwater flows. The results show that the inter-dune mires are supplied by a mixture of local and regional groundwater systems. The groundwater supply at one of the inter-dune mires was dominated by local groundwater flow from adjacent dunes, but we also detected a small input of calcareous water. This dominance of local groundwater may have resulted from the presence of drainage ditches and a small stream that drains into the Baltic Sea. In contrast, the extremely base-rich fens were found to be solely dependent on regional groundwater which is likely to discharge at the plateau foothills due to the presence of fault structures. Thus, the mires in Slitere National Park are not as undisturbed as was previously believed. Drainage may have affected the original hydrological flow paths. Further research on the extent of these changes is recommended to preserve the endangered species and high biodiversity of these fens. Also, in order to trace the origin of groundwater flows, further investigation into the larger landscape beyond the plateau might be required.
Keywords