Energies (May 2023)

Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster

  • Fredrik Skaug Fadnes,
  • Reyhaneh Banihabib,
  • Mohsen Assadi

DOI
https://doi.org/10.3390/en16093875
Journal volume & issue
Vol. 16, no. 9
p. 3875

Abstract

Read online

The use of heat pumps for heating and cooling of buildings is increasing, offering an efficient and eco-friendly thermal energy supply. However, their complexity and system integration require attention to detail, and minor design or operational errors can significantly impact a project’s success. Therefore, it is essential to have a thorough understanding of the system’s intricacies and demands, specifically detailed system knowledge and precise models. In this article, we propose a method using artificial neural networks to develop heat pump models from measured data. The investigation focuses on an operational heat pump plant for heating and cooling a cluster of municipal buildings in Stavanger, Norway. The work showcases that the network configurations can provide process insights and knowledge when detailed system information is unavailable. Model A predicts the heat pump response to temperature setpoint and inlet conditions. Except for some challenges during low-demand cooling mode, the model predicts outlet temperatures with Mean Absolute Percentage Error (MAPE) between 2 and 5% and energy production and consumption with MAPE below 10%. Summarizing the five-minute interval predictions, the model predicts the hourly energy production and consumption with MAPE at 3% or less. Model B predicts energy consumption and coefficient of performance (COP) from measured inlet and outlet conditions with MAPE below 5%. The model may serve as a tool to develop system-specific compressor maps for part-load conditions and for real-time performance monitoring.

Keywords