PLoS ONE (Jan 2013)

Designed Chemical Intervention with Thiols for Prophylactic Contraception.

  • Monika Sharma,
  • Lokesh Kumar,
  • Ashish Jain,
  • Vikas Verma,
  • Vikas Sharma,
  • Bhavana Kushwaha,
  • Nand Lal,
  • Lalit Kumar,
  • Tara Rawat,
  • Anil K Dwivedi,
  • Jagdamba P Maikhuri,
  • Vishnu L Sharma,
  • Gopal Gupta

DOI
https://doi.org/10.1371/journal.pone.0067365
Journal volume & issue
Vol. 8, no. 6
p. e67365

Abstract

Read online

Unlike somatic cells, sperm have several-fold more available-thiols that are susceptible to redox-active agents. The present study explains the mechanism behind the instant sperm-immobilizing and trichomonacidal activities of pyrrolidinium pyrrolidine-1-carbodithioate (PPC), a novel thiol agent rationally created for prophylactic contraception by minor chemical modifications of some known thiol drugs. PPC, and its three derivatives (with potential active-site blocked by alkylation), were synthesized and evaluated against live human sperm and metronidazole-susceptible and resistant Trichomonas vaginalis, in vitro. Sperm hexokinase activity was evaluated by coupled enzyme assay. PPC irreversibly immobilized 100% human sperm in ∼30 seconds and totally eliminated Trichomonas vaginalis more efficiently than nonoxynol-9 and metronidazole. It significantly inhibited (P<0.001) thiol-sensitive sperm hexokinase. However, the molecule completely lost all its biological activities once its thiol group was blocked by alkylation. PPC was subsequently formulated into a mucoadhesive vaginal film using GRaS excipients and evaluated for spermicidal and microbicidal activities (in vitro), and contraceptive efficacy in rabbits. PPC remained fully active in quick-dissolving, mucoadhesive vaginal-film formulation, and these PPC-films significantly reduced pregnancy and fertility rates in rabbits. The films released ∼90% of PPC in simulated vaginal fluid (pH 4.2) at 37°C in 5 minutes, in vitro. We have thus discovered a common target (reactive thiols) on chiefly-anaerobic, redox-sensitive cells like sperm and Trichomonas, which is susceptible to designed chemical interference for prophylactic contraception. The active thiol in PPC inactivates sperm and Trichomonas via interference with crucial sulfhydryl-disulfide based reactions, e.g. hexokinase activation in human sperm. In comparison to non-specific surfactant action of OTC spermicide nonoxynol-9, the action of thiol-active PPC is apparently much more specific, potent and safe. PPC presents a proof-of-concept for prophylactic contraception via manipulation of thiols in vagina for selective targeting of sperm and Trichomonas, and qualifies as a promising lead for the development of dually protective vaginal-contraceptive.