Stem Cell Research (Oct 2017)

Reprogramming of rabbit induced pluripotent stem cells toward epiblast and chimeric competency using Krüppel-like factors

  • Yann Tapponnier,
  • Marielle Afanassieff,
  • Irène Aksoy,
  • Maxime Aubry,
  • Anaïs Moulin,
  • Lucas Medjani,
  • Wilhelm Bouchereau,
  • Chloé Mayère,
  • Pierre Osteil,
  • Jazmine Nurse-Francis,
  • Ioannis Oikonomakos,
  • Thierry Joly,
  • Luc Jouneau,
  • Catherine Archilla,
  • Barbara Schmaltz-Panneau,
  • Nathalie Peynot,
  • Harmonie Barasc,
  • Alain Pinton,
  • Jérome Lecardonnel,
  • Elen Gocza,
  • Nathalie Beaujean,
  • Véronique Duranthon,
  • Pierre Savatier

DOI
https://doi.org/10.1016/j.scr.2017.09.001
Journal volume & issue
Vol. 24, no. C
pp. 106 – 117

Abstract

Read online

Rabbit induced pluripotent stem cells (rbiPSCs) possess the characteristic features of primed pluripotency as defined in rodents and primates. In the present study, we reprogrammed rbiPSCs using human Krüppel-like factors (KLFs) 2 and 4 and cultured them in a medium supplemented with fetal calf serum and leukemia inhibitory factor. These cells (designated rbEKA) were propagated by enzymatic dissociation for at least 30 passages, during which they maintained a normal karyotype. This new culturing protocol resulted in transcriptional and epigenetic reconfiguration, as substantiated by the expression of transcription factors and the presence of histone modifications associated with naïve pluripotency. Furthermore, microarray analysis of rbiPSCs, rbEKA cells, rabbit ICM cells, and rabbit epiblast showed that the global gene expression profile of the reprogrammed rbiPSCs was more similar to that of rabbit ICM and epiblast cells. Injection of rbEKA cells into 8-cell stage rabbit embryos resulted in extensive colonization of ICM in 9% early-blastocysts (E3.5), epiblast in 10% mid-blastocysts (E4.5), and embryonic disk in 1.4% pre-gastrulae (E6). Thus, these results indicate that KLF2 and KLF4 triggered the conversion of rbiPSCs into epiblast-like, embryo colonization-competent PSCs. Our results highlight some of the requirements to achieve bona fide chimeric competency.

Keywords