Patient Safety (Dec 2020)

Health Information Technology–Related Wrong-Patient Errors: Context is Critical

  • Tracy Kim,
  • Jessica Howe,
  • Ella Franklin,
  • Seth Krevat,
  • Rebecca Jones,
  • Katharine Adams,
  • Allan Fong,
  • Jessica Oaks,
  • Raj Ratwani

Journal volume & issue
Vol. 2, no. 4

Abstract

Read online

Health information technology (HIT) provides many benefits, but also facilitates certain types of errors, such as wrong-patient errors in which one patient is mistaken for another. These errors can have serious patient safety consequences and there has been significant effort to mitigate the risk of these errors through national patient safety goals, in-depth research, and the development of safety toolkits. Nonetheless, these errors persist. We analyzed 1,189 patient safety event reports using a safety science and resilience engineering approach, which focuses on identifying processes to discover errors before they reach the patient so these processes can be expanded. We analyzed the general care processes in which wrong-patient errors occurred, the clinical process step during which the error occurred and was discovered, and whether the error reached the patient. For those errors that reached the patient, we analyzed the impact on the patient, and for those that did not reach the patient, we analyzed how the error was caught. Our results demonstrate that errors occurred across multiple general care process areas, with 24.4% of wrong-patient error events reaching the patient. Analysis of clinical process steps indicated that most errors occurred during ordering/prescribing (n=498; 41.9%) and most errors were discovered during review of information (n=286; 24.1%). Patients were primarily impacted by inappropriate medication administration (n=110; 37.9%) and the wrong test or procedure being performed (n=65; 22.4%). When errors were caught before reaching the patient, this was primarily because of nurses, technicians, or other healthcare staff (n=303; 60.5%). The differences between the general care processes can inform wrong-patient error risk mitigation strategies. Based on these analyses and the broader literature, this study offers recommendations for addressing wrong-patient errors using safety science and resilience engineering, and it provides a unique lens for evaluating HIT wrong-patient errors.