Inorganics (Jun 2025)
Accessing the Magnetic Morphology of Ferromagnetic Molecular-Based Nanoparticles from Polarized Small-Angle Neutron Scattering
Abstract
Polarized Small-Angle Neutron Scattering is a versatile low-energy neutron scattering technique that allows for the access of magnetic information on nanosize objects of size 2–100 nm, from individual properties like the magnetization distribution inside the object to the collective behaviors, e.g., spin-glass effects or long-range magnetic ordering. The multi-scale possibilities of this technique is particularly relevant to encompass simultaneously the individual and collective many-body phenomena. In this article, we report the direct measurement of the magnetic form factor of “Prussian Blue Analog” molecular-based Ferromagnetic nanoparticles CsxINiII[CrIII(CN)6] embedded in a polymer matrix with use of Polarized Small-Angle Neutron Scattering. We show that PSANS is particularly adapted to evaluate the internal magnetization distribution in nanoparticles and determine their magnetic morphology.
Keywords