Molecules (Dec 2023)

The Impact of Surface Chemistry and Synthesis Conditions on the Adsorption of Antibiotics onto MXene Membranes

  • Moyosore A. Afolabi,
  • Dequan Xiao,
  • Yongsheng Chen

DOI
https://doi.org/10.3390/molecules29010148
Journal volume & issue
Vol. 29, no. 1
p. 148

Abstract

Read online

MXene, a two-dimensional (2D) nanomaterial with diverse applications, has gained significant attention due to its 2D lamellar structure, abundance of surface groups, and conductivity. Despite various established synthesis methods since its discovery in 2011, MXenes produced through different approaches exhibit variations in structural and physicochemical characteristics, impacting their suitability for environmental application. This study delves into the effect of synthesis conditions on MXene properties and its adsorption capabilities for four commonly prescribed antibiotics. We utilized material characterization techniques to differentiate MXenes synthesized using three prevalent etchants: hydrofluoric acid (HF), mixed acids (HCl/HF), and fluoride salts (LiF/HCl). Our investigation of adsorption performance included isotherm and kinetic analysis, complemented by density functional theory calculations. The results of this research pinpointed LiF/HCl as an efficient etchant, yielding MXene with favorable morphology and surface chemistry. Electrostatic interactions and hydrogen bonding between MXene surface terminations and ionizable moieties of the antibiotic molecules emerge as pivotal factors in adsorption. Specifically, a higher presence of oxygen terminations increases the binding affinities. These findings provide valuable guidance for etchant selection in environmental applications and underscore the potential to tailor MXenes through synthesis conditions to design membranes capable of selectively removing antibiotics and other targeted substances.

Keywords