PLoS ONE (Jan 2013)

Olfactory sensitivity for six predator odorants in CD-1 mice, human subjects, and spider monkeys.

  • Amir Sarrafchi,
  • Anna M E Odhammer,
  • Laura Teresa Hernandez Salazar,
  • Matthias Laska

DOI
https://doi.org/10.1371/journal.pone.0080621
Journal volume & issue
Vol. 8, no. 11
p. e80621

Abstract

Read online

Using a conditioning paradigm, we assessed the olfactory sensitivity of six CD-1 mice (Mus musculus) for six sulfur-containing odorants known to be components of the odors of natural predators of the mouse. With all six odorants, the mice discriminated concentrations <0.1 ppm (parts per million) from the solvent, and with five of the six odorants the best-scoring animals were even able to detect concentrations <1 ppt (parts per trillion). Four female spider monkeys (Ateles geoffroyi) and twelve human subjects (Homo sapiens) tested in parallel were found to detect the same six odorants at concentrations <0.01 ppm, and with four of the six odorants the best-scoring animals and subjects even detected concentrations <10 ppt. With all three species, the threshold values obtained here are generally lower than (or in the lower range of) those reported for other chemical classes tested previously, suggesting that sulfur-containing odorants may play a special role in olfaction. Across-species comparisons showed that the mice were significantly more sensitive than the human subjects and the spider monkeys with four of the six predator odorants. However, the human subjects were significantly more sensitive than the mice with the remaining two odorants. Human subjects and spider monkeys significantly differed in their sensitivity with only two of the six odorants. These comparisons lend further support to the notion that the number of functional olfactory receptor genes or the relative or absolute size of the olfactory bulbs are poor predictors of a species' olfactory sensitivity. Analysis of odor structure-activity relationships showed that in both mice and human subjects the type of alkyl rest attached to a thietane and the type of oxygen moiety attached to a thiol significantly affected olfactory sensitivity.