PLoS ONE (Jan 2012)

Isotopic evidence that dragonflies (Pantala flavescens) migrating through the Maldives come from the northern Indian subcontinent.

  • Keith A Hobson,
  • R Charles Anderson,
  • David X Soto,
  • Leonard I Wassenaar

DOI
https://doi.org/10.1371/journal.pone.0052594
Journal volume & issue
Vol. 7, no. 12
p. e52594

Abstract

Read online

Large numbers of the Globe Skimmer dragonfly (Pantala flavescens) appear in the Maldives every October-December. Since they cannot breed on these largely waterless islands, it has recently been suggested that they are "falling out" during a trans-oceanic flight from India to East Africa. In addition, it has been suggested that this trans-oceanic crossing is just one leg of a multi-generational migratory circuit covering about 14,000-18,000 km. The dragonflies are presumed to accomplish this remarkable feat by riding high-altitude winds associated with the Inter-tropical Convergence Zone (ITCZ). While there is considerable evidence for this migratory circuit, much of that evidence is circumstantial. Recent developments in the application of stable isotope analyses to track migratory dragonflies include the establishment of direct associations between dragonfly wing chitin δ(2)H values with those derived from long-term δ(2)H precipitation isoscapes. We applied this approach by measuring wing chitin δ(2)H values in 49 individual Pantala flavescens from the November-December migration through the Maldives. Using a previously established spatial calibration algorithm for dragonflies, the mean wing δ(2)H value of -117±16 ‰ corresponded to a predicted mean natal ambient water source of -81 ‰, which resulted in a probabilistic origin of northern India, and possibly further north and east. This strongly suggests that the migratory circuit of this species in this region is longer than previously suspected, and could possibly involve a remarkable trans-Himalayan high-altitude traverse.