Drones (Oct 2022)
A Novel Method of Small Object Detection in UAV Remote Sensing Images Based on Feature Alignment of Candidate Regions
Abstract
To solve the problem of low detection accuracy of small objects in UAV optical remote sensing images due to low contrast, dense distribution, and weak features, this paper proposes a small object detection method based on feature alignment of candidate regions is proposed for remote sensing images. Firstly, AFA-FPN (Attention-based Feature Alignment FPN) defines the corresponding relationship between feature mappings, solves the misregistration of features between adjacent levels, and improves the recognition ability of small objects by aligning and fusing shallow spatial features and deep semantic features. Secondly, the PHDA (Polarization Hybrid Domain Attention) module captures local areas containing small object features through parallel channel domain attention and spatial domain attention. It assigns a larger weight to these areas to alleviate the interference of background noise. Then, the rotation branch uses RROI to rotate the horizontal frame obtained by RPN, which avoids missing detection of small objects with dense distribution and arbitrary direction. Next, the rotation branch uses RROI to rotate the horizontal box obtained by RPN. It solves the problem of missing detection of small objects with dense distribution and arbitrary direction and prevents feature mismatch between the object and candidate regions. Finally, the loss function is improved to better reflect the difference between the predicted value and the ground truth. Experiments are conducted on a self-made dataset. The experimental results show that the mAP of the proposed method reaches 82.04% and the detection speed reaches 24.3 FPS, which is significantly higher than that of the state-of-the-art methods. Meanwhile, the ablation experiment verifies the rationality of each module.
Keywords