Forum of Mathematics, Pi (Jan 2020)

MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS, I: LOW MOMENTS, BETTER THAN SQUAREROOT CANCELLATION, AND CRITICAL MULTIPLICATIVE CHAOS

  • ADAM J. HARPER

DOI
https://doi.org/10.1017/fmp.2019.7
Journal volume & issue
Vol. 8

Abstract

Read online

We determine the order of magnitude of $\mathbb{E}|\sum _{n\leqslant x}f(n)|^{2q}$, where $f(n)$ is a Steinhaus or Rademacher random multiplicative function, and $0\leqslant q\leqslant 1$. In the Steinhaus case, this is equivalent to determining the order of $\lim _{T\rightarrow \infty }\frac{1}{T}\int _{0}^{T}|\sum _{n\leqslant x}n^{-it}|^{2q}\,dt$.

Keywords