Energies (Sep 2024)

A Comparative Study of Data-Driven Early-Stage End-of-Life Classification Approaches for Lithium-Ion Batteries

  • Xuelu Wang,
  • Jianwen Meng,
  • Toufik Azib

DOI
https://doi.org/10.3390/en17174485
Journal volume & issue
Vol. 17, no. 17
p. 4485

Abstract

Read online

Lithium-ion batteries are the most widely used as energy storage devices in electric mobility applications. However, due to complex electrochemical processes of battery degradation, it is challenging to predict accurately the battery end-of-life (EOL) to ensure their reliability, safety, and extended usage. In this context, the introduction of machine learning techniques can provide relevant solutions based on data collection and analysis. Indeed, we compared in this study the prediction performance of numerous machine learning approaches that predict if the battery EOL bypasses a predefined threshold. Based on the variation of different indicators during the first several hundred cycles, such as charge and discharge capacity, internal resistance, and energy efficiency, extensive numerical tests have been executed and compared in terms of accuracy score, precision score, recall score, etc. All the studied machine learning approaches are trained and validated using an open-access database of 124 commercial lithium iron phosphate/graphite cells cycled under different fast-charging conditions. As a result, the classification prediction performance score reached up to 98.74% depending on the percentage of data and cycles used for training and validation as well as the predefined EOL threshold. The comparative results can be used to improve the existing health-aware energy management strategy by taking the state-of-health (SOH) of batteries into consideration. Overall, the presented research findings are relevant to battery system reliability and safety engineering.

Keywords