Case Studies in Thermal Engineering (Dec 2024)

Damage power enhancement of fuel air explosive with typical metal hydrides additions

  • Bei-bei Zhang,
  • Yang-fan Cheng,
  • Xiao-wen Ma,
  • Hong-hao Ma

Journal volume & issue
Vol. 64
p. 105440

Abstract

Read online

To study the damage power enhancement of fuel air explosive (FAE) with metal hydrides, the effects of metal hydrides (TiH2, MgH2, ZrH2) powders on shock wave and thermal damage of pure propylene oxide (PO) were explored using a 20 L spherical explosion test system combined with colorimetric thermometry technology. The experimental results showed that compared with the base metal powders, the explosion overpressures, maximum pressure rise rates and maximum average temperatures of the solid-liquid mixed fuel with the metal hydrides (TiH2, MgH2, ZrH2) powders increased by 11.04 %, 22.61 %, 4.80 % and 26.68 %, 38.18 %, 13.91 % as well as 6.85 %, 8.57 %, 1.34 %, respectively. Furthermore, the effects of metal hydride powders on the cloud explosion fuel were better than those of Al powders, and MgH2 powders had the most significant effects on the damage power enhancement of pure PO. Metal hydride powders as high-energy additives could improve the energy release characteristics of FAE.

Keywords