Machine Learning and Knowledge Extraction (Jul 2022)

Do We Need a Specific Corpus and Multiple High-Performance GPUs for Training the BERT Model? An Experiment on COVID-19 Dataset

  • Nontakan Nuntachit,
  • Prompong Sugunnasil

DOI
https://doi.org/10.3390/make4030030
Journal volume & issue
Vol. 4, no. 3
pp. 641 – 664

Abstract

Read online

The COVID-19 pandemic has impacted daily lives around the globe. Since 2019, the amount of literature focusing on COVID-19 has risen exponentially. However, it is almost impossible for humans to read all of the studies and classify them. This article proposes a method of making an unsupervised model called a zero-shot classification model, based on the pre-trained BERT model. We used the CORD-19 dataset in conjunction with the LitCovid database to construct new vocabulary and prepare the test dataset. For NLI downstream task, we used three corpora: SNLI, MultiNLI, and MedNLI. We significantly reduced the training time by 98.2639% to build a task-specific machine learning model, using only one Nvidia Tesla V100. The final model can run faster and use fewer resources than its comparators. It has an accuracy of 27.84%, which is lower than the best-achieved accuracy by 6.73%, but it is comparable. Finally, we identified that the tokenizer and vocabulary more specific to COVID-19 could not outperform the generalized ones. Additionally, it was found that BART architecture affects the classification results.

Keywords