PLoS Pathogens (Apr 2020)

ZFYVE1 negatively regulates MDA5- but not RIG-I-mediated innate antiviral response.

  • Xuan Zhong,
  • Lu Feng,
  • Ru Zang,
  • Cao-Qi Lei,
  • Qing Yang,
  • Hong-Bing Shu

DOI
https://doi.org/10.1371/journal.ppat.1008457
Journal volume & issue
Vol. 16, no. 4
p. e1008457

Abstract

Read online

The retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), including RIG-I and melanoma differentiation-associated gene 5 (MDA5), sense cytoplasmic viral RNA and initiate innate antiviral responses. How RIG-I and MDA5 are differentially regulated remains enigmatic. In this study, we identified the guanylate-binding protein (GBP) and zinc-finger FYVE domain-containing protein ZFYVE1 as a negative regulator of MDA5- but not RIG-I-mediated innate antiviral responses. ZFYVE1-deficiency promoted MDA5- but not RIG-I-mediated transcription of downstream antiviral genes. Comparing to wild-type mice, Zfyve1-/- mice were significantly protected from lethality induced by encephalomyocarditis virus (EMCV) that is sensed by MDA5, whereas Zfyve1-/- and Zfyve1+/+ mice were comparable to death induced by vesicular stomatitis virus (VSV) that is sensed by RIG-I. Mechanistically, ZFYVE1 interacted with MDA5 but not RIG-I. ZFYVE1 bound to viral RNA and decreased the ligand binding and oligomerization of MDA5. These findings suggest that ZFYVE1 acts as a specific negative regulator of MDA5-mediated innate immune responses by inhibiting its ligand binding and oligomerization.