A New Texture Spectrum Based on Parallel Encoded Texture Unit and Its Application on Image Classification: A Potential Prospect for Vision Sensing
José Trinidad Guillen Bonilla,
Nancy Elizabeth Franco Rodríguez,
Héctor Guillen Bonilla,
Alex Guillen Bonilla,
Verónica María Rodríguez Betancourtt,
Maricela Jiménez Rodríguez,
María Eugenia Sánchez Morales,
Oscar Blanco Alonso
Affiliations
José Trinidad Guillen Bonilla
Departamento de Electro-Fotónica, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd-M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
Nancy Elizabeth Franco Rodríguez
Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd-M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
Héctor Guillen Bonilla
Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd-M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
Alex Guillen Bonilla
Departamento de Ciencias Computacionales e Ingenierías, CUVALLES, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico
Verónica María Rodríguez Betancourtt
Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd-M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
Maricela Jiménez Rodríguez
Departamento de Ciencias Básicas, Centro Universitario de la Ciénega (CUCienéga), Universidad de Guadalajara, Av. Universidad No. 1115, LindaVista, Ocotlán 47810, Jalisco, Mexico
María Eugenia Sánchez Morales
Departamento de Ciencias Tecnológicas, Centro Universitario de la Ciénega (CUCienéga), Universidad de Guadalajara, Av. Universidad No. 1115, LindaVista, Ocotlán 47810, Jalisco, Mexico
Oscar Blanco Alonso
Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd-M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
In industrial applications based on texture classification, efficient and fast classifiers are extremely useful for quality control of industrial processes. The classifier of texture images has to satisfy two requirements: It must be efficient and fast. In this work, a texture unit is coded in parallel, and using observation windows larger than 3×3, a new texture spectrum called Texture Spectrum based on the Parallel Encoded Texture Unit (TS_PETU) is proposed, calculated, and used as a characteristic vector in a multi-class classifier, and then two image databases are classified. The first database contains images from the company Interceramic®® and the images were acquired under controlled conditions, and the second database contains tree stems and the images were acquired in natural environments. Based on our experimental results, the TS_PETU satisfied both requirements (efficiency and speed), was developed for binary images, and had high efficiency, and its compute time could be reduced by applying parallel coding concepts. The classification efficiency increased by using larger observational windows, and this one was selected based on the window size. Since the TS_PETU had high efficiency for Interceramic®® tile classification, we consider that the proposed technique has significant industrial applications.