Information (Dec 2020)

Interactive Visual Analysis of Mass Spectrometry Imaging Data Using Linear and Non-Linear Embeddings

  • Muhammad Jawad,
  • Jens Soltwisch,
  • Klaus Dreisewerd,
  • Lars Linsen

DOI
https://doi.org/10.3390/info11120575
Journal volume & issue
Vol. 11, no. 12
p. 575

Abstract

Read online

Mass spectrometry imaging (MSI) is an imaging technique used in analytical chemistry to study the molecular distribution of various compounds at a micro-scale level. For each pixel, MSI stores a mass spectrum obtained by measuring signal intensities of thousands of mass-to-charge ratios (m/z-ratios), each linked to an individual molecular ion species. Traditional analysis tools focus on few individual m/z-ratios, which neglects most of the data. Recently, clustering methods of the spectral information have emerged, but faithful detection of all relevant image regions is not always possible. We propose an interactive visual analysis approach that considers all available information in coordinated views of image and spectral space visualizations, where the spectral space is treated as a multi-dimensional space. We use non-linear embeddings of the spectral information to interactively define clusters and respective image regions. Of particular interest is, then, which of the molecular ion species cause the formation of the clusters. We propose to use linear embeddings of the clustered data, as they allow for relating the projected views to the given dimensions. We document the effectiveness of our approach in analyzing matrix-assisted laser desorption/ionization (MALDI-2) imaging data with ground truth obtained from histological images.

Keywords