MethodsX (Jun 2025)

Locally kernel weighted maximum likelihood estimator for local linear multi-predictor poisson regression

  • Darnah,
  • Memi Nor Hayati,
  • Sri Wahyuningsih,
  • Iriyani Kamaruddin,
  • Suyitno,
  • Andrea Tri Rian Dani,
  • Rito Goejantoro,
  • Desi Yuniarti,
  • Fidia Deny Tisna Amijaya,
  • Ika Purnamasari,
  • Meiliyani Siringoringo,
  • Surya Prangga,
  • Ratna Kusuma,
  • Rahmawati Munir

DOI
https://doi.org/10.1016/j.mex.2025.103258
Journal volume & issue
Vol. 14
p. 103258

Abstract

Read online

We introduce a new multi-predictor regression model based on the Poisson distribution using a local linear approach called the local linear multi-predictor Poisson regression. The optimal bandwidth in this study was selected based on the maximum likelihood cross-validation (MLCV) value. The locally kernel-weighted maximum likelihood estimator is used to estimate the regression curve at a given point. Parameter estimation was performed using the Newton-Raphson iteration method. The superior points in this research are: • A new model in regression to model multi-predictor case Poisson regression problems using a local liner approach • Optimal bandwidth selection using MCLV • Application of multi predictor case Poisson regression problems using a local liner approach to health data; namely the stunting case in East Kalimantan

Keywords