BMC Neurology (Sep 2024)

Prediction of poststroke independent walking using machine learning: a retrospective study

  • Zhiqing Tang,
  • Wenlong Su,
  • Tianhao Liu,
  • Haitao Lu,
  • Ying Liu,
  • Hui Li,
  • Kaiyue Han,
  • Md. Moneruzzaman,
  • Junzi Long,
  • Xingxing Liao,
  • Xiaonian Zhang,
  • Lei Shan,
  • Hao Zhang

DOI
https://doi.org/10.1186/s12883-024-03849-z
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Accurately predicting the walking independence of stroke patients is important. Our objective was to determine and compare the performance of logistic regression (LR) and three machine learning models (eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and Random Forest (RF)) in predicting walking independence at discharge in stroke patients, as well as to explore the variables that predict prognosis. Methods 778 (80% for the training set and 20% for the test set) stroke patients admitted to China Rehabilitation Research Center between February 2020 and January 2023 were retrospectively included. The training set was used for training models. The test set was used to validate and compare the performance of the four models in terms of area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1 score. Results Among the three ML models, the AUC of the XGBoost model is significantly higher than that of the SVM and RF models (P < 0.001, P = 0.024, respectively). There was no significant difference in the AUCs between the XGBoost model and the LR model (0.891 vs. 0.880, P = 0.560). The XGBoost model demonstrated superior accuracy (87.82% vs. 86.54%), sensitivity (50.00% vs. 39.39%), PPV (73.68% vs. 73.33%), NPV (89.78% vs. 87.94%), and F1 score (59.57% vs. 51.16%), with only slightly lower specificity (96.09% vs. 96.88%). Together, the XGBoost model and the stepwise LR model identified age, FMA-LE at admission, FAC at admission, and lower limb spasticity as key factors influencing independent walking. Conclusion Overall, the XGBoost model performed best in predicting independent walking after stroke. The XGBoost and LR models together confirm that age, admission FMA-LE, admission FAC, and lower extremity spasticity are the key factors influencing independent walking in stroke patients at hospital discharge. Trial registration Not applicable.

Keywords