NeuroImage (Feb 2021)
fMRI-Indexed neural temporal tuning reveals the hierarchical organsiation of the face and person selective network
Abstract
Recognising and knowing about conspecifics is vital to human interaction and is served in the brain by a well-characterised cortical network. Understanding the temporal dynamics of this network is critical to gaining insight into both hierarchical organisation and regional coordination. Here, we combine the high spatial resolution of fMRI with a paradigm that permits investigation of differential temporal tuning across cortical regions. We cognitively under- and overload the system using the rapid presentation (100–1200msec) of famous faces and buildings. We observed an increase in activity as presentation rates slowed and a negative deflection when inter-stimulus intervals (ISIs) were extended to longer periods. The primary distinction in tuning patterns was between core (perceptual) and extended (non-perceptual) systems but there was also evidence for nested hierarchies within systems, as well as indications of widespread parallel processing. Extended regions demonstrated common temporal tuning across regions which may indicate coordinated activity as they cooperate to manifest the diverse cognitive representation accomplished by this network. With the support of an additional psychophysical study, we demonstrated that ISIs necessary for different levels of semantic access are consistent with temporal tuning patterns. Collectively, these results show that regions of the person-knowledge network operate over different temporal timescales consistent with hierarchical organisation.