Shock and Vibration (Jan 2021)

Evaluation of the Modal Coupling Effect in Midstory Isolation Systems Based on Random Vibration Analysis

  • Xiao Song,
  • Songtao Xue

DOI
https://doi.org/10.1155/2021/9382235
Journal volume & issue
Vol. 2021

Abstract

Read online

At present, the midstory isolation (MSI) technology has great potential for application in historical buildings’ retrofitting and multifunction buildings. The coupling effect due to the variability of the location of the isolation layer may amplify the structural seismic response and is required for in-depth analysis. This paper aims to evaluate the magnitude of the coupling effect and delimitate the region of the coupling effect to be considered. Based on the complex mode superposition method, the explicit formulas for calculating the random response of the simplified model are deduced. The root-mean-square (RMS) ratio of the shear force coefficient of the upper isolation system is adopted as the performance indicator to evaluate the coupling amplification effect of the MSI system. Parameter analysis indicates that the coupling region is closely related to the mass ratio and frequency ratio of the upper and lower structures to the isolation layer. In general, the region of the coupling effect to be considered can be divided into two parts according to parameters of frequency ratios, depending on the thresholds of the performance indicator. As the mass ratio of the upper isolation system to the entire system increases, one of the coupling regions shrinks and eventually disappears, indicating that the coupling amplification effect in this region can be neglected under certain conditions. Finally, the time-domain analysis of three representative numerical cases of MSI buildings was performed to verify the reliability of the results obtained from the frequency-domain analysis. The research results can provide technical guidance for the preliminary design of the MSI buildings.