Applied Sciences (Nov 2017)

ABS-SOCI: An Agent-Based Simulator of Student Sociograms

  • Iván García-Magariño,
  • Andrés S. Lombas,
  • Inmaculada Plaza,
  • Carlos Medrano

DOI
https://doi.org/10.3390/app7111126
Journal volume & issue
Vol. 7, no. 11
p. 1126

Abstract

Read online

Sociograms can represent the social relations between students. Some kinds of sociograms are more suitable than others for achieving a high academic performance of students. However, for now, at the beginning of an educative period, it is not possible to know for sure how the sociogram of a group of students will be or evolve during a semester or an academic year. In this context, the current approach presents an Agent-Based Simulator (ABS) that predicts the sociogram of a group of students taking into consideration their psychological profiles, by evolving an initial sociogram through time. This simulator is referred to as ABS-SOCI (ABS for SOCIograms). For instance, this can be useful for organizing class groups for some subjects of engineering grades, anticipating additional learning assistance or testing some teaching strategies. As experimentation, ABS-SOCI has been executed 100 times for each one of four real scenarios. The results show that ABS-SOCI produces sociograms similar to the real ones considering certain sociometrics. This similarity has been corroborated by statistical binomial tests that check whether there are significant differences between the simulations and the real cases. This experimentation also includes cross-validation and an analysis of sensitivity. ABS-SOCI is free and open-source to (1) ensure the reproducibility of the experiments; (2) to allow practitioners to run simulations; and (3) to allow developers to adapt the simulator for different environments.

Keywords