Applied Sciences (Sep 2024)

Development and Testing of a Helicon Plasma Thruster Based on a Magnetically Enhanced Inductively Coupled Plasma Reactor Operating in a Multi-Mode Regime

  • Anna-Maria Theodora Andreescu,
  • Daniel Eugeniu Crunteanu,
  • Maximilian Vlad Teodorescu,
  • Simona Nicoleta Danescu,
  • Alexandru Cancescu,
  • Adrian Stoicescu,
  • Alexandru Paraschiv

DOI
https://doi.org/10.3390/app14188308
Journal volume & issue
Vol. 14, no. 18
p. 8308

Abstract

Read online

A disruptive Electric Propulsion system is proposed for next-generation Low-Earth-Orbit (LEO) small satellite constellations, utilizing an RF-powered Helicon Plasma Thruster (HPT). This system is built around a Magnetically Enhanced Inductively Coupled Plasma (MEICP) reactor, which enables acceleration of quasi-neutral plasma through a magnetic nozzle. The MEICP reactor features an innovative design with a multi-dipole magnetic confinement system, generated by neodymium iron boron (NdFeB) permanent magnets, combined with an azimuthally asymmetric half-wavelength right (HWRH) antenna and a variable-section ionization chamber. The plasma reactor is followed by a solenoid-free magnetic nozzle (MN), which facilitates the formation of an ambipolar potential drop, enabling the conversion of electron thermal energy into ion beam energy. This study explores the impact of an inhomogeneous magnetic field on the heating mechanism of the HPT and highlights its multi-mode operation within a pulsed power range of 200 to 500 W of RF. The discharge state, characterized by high-energy electron-excited ions and low-energy excited neutral particles in the plasma plume, was analyzed using optical emission spectroscopy (OES). The experimental testing campaign, conducted under pulsed power excitation, reveals that, as RF input power increases, the MEICP reactor transitions from inductive (H-mode) to wave coupling (W-mode) discharge modes. Spectrograms, electron temperature, and plasma density measurements were obtained for the Helicon Plasma Thruster within its operational envelope. Based on OES data, the ideal specific impulse was estimated to exceed 1000 s, highlighting the significant potential of this technology for future LEO/VLEO space missions.

Keywords