PeerJ Computer Science (Jan 2023)

Fingerprint image enhancement using multiple filters

  • Haroon Shams,
  • Tariqullah Jan,
  • Amjad Ali Khalil,
  • Naveed Ahmad,
  • Abid Munir,
  • Ruhul Amin Khalil

DOI
https://doi.org/10.7717/peerj-cs.1183
Journal volume & issue
Vol. 9
p. e1183

Abstract

Read online Read online

Biometrics is the measurement of an individual’s distinctive physical and behavioral characteristics. In comparison to traditional token-based or knowledge-based forms of identification, biometrics such as fingerprints, are more reliable. Fingerprint images recorded digitally can be affected by scanner noise, incorrect finger pressure, condition of the finger’s skin (wet, dry, or abraded), or physical material it is scanned from. Image enhancement algorithms applied to fingerprint images remove noise elements while retaining relevant structures (ridges, valleys) and help in the detection of fingerprint features (minutiae). Amongst the most common image enhancement filters is the Gabor filter, however, given their restricted maximum bandwidth as well as limited range of spectral information, it falls short. We put forward a novel method of fingerprint image enhancement using a combination of a diffusion-coherence filter and a 2D log-Gabor filter. The log-Gabor overcomes the limitations of the Gabor filter while Coherence Diffusion mitigates noise elements within fingerprint images. Implementation is done on the FVC image database and assessed via visual comparison with coherence diffusion used disjointedly and with the Gabor filter.

Keywords