Additive Manufacturing Letters (Apr 2024)

Additive manufacturing of high nitrogen austenitic steel using shell-core strategy

  • L. Becker,
  • F. Radtke,
  • J. Lentz,
  • S. Herzog,
  • C. Broeckmann,
  • S. Weber

Journal volume & issue
Vol. 9
p. 100205

Abstract

Read online

Laser Powder Bed Fusion/Metal (PBF-LB/M) is a promising technology for industrial applications, but challenges such as long process times remain. Innovations such as the shell-core approach aim to address this by creating a dense shell around a minimally exposed powder core, significantly reducing processing times, with full densification and property adjustments achieved by subsequent hot isostatic pressing (HIP). This study focuses on the fabrication of shell-core samples using a powder mixture of austenitic steel and Si3N4 to produce high nitrogen steel PBF-LB/M components, which are otherwise difficult to produce due to the limited nitrogen solubility in the melt. PBF-LB/M induces Si3N4 decomposition, resulting in Si and N loss through laser-powder interaction. Si3N4 particles in the still powdered regions serve as a source of N enrichment during HIP, circumventing the limitations of nitrogen solubility in the melt and exploiting the higher solubility in the solid. After HIP, energy dispersive spectrometry and electron backscatter diffraction reveal a fully austenitic matrix with Si diffusion seams mainly in non-laser-exposed areas. The Si3N4 dissolution during HIP contributes to an interstitial dissolved N content of about 0.189 mass%, which, together with the higher Si content, increases hardness. Wavelength dispersive spectrometry (WDS) and nanoindentation line scans show decreasing Si and N concentrations from core to shell, resulting in reduced (nano)hardness in the shell. This innovative approach demonstrates the potential to produce AM components with enhanced properties by overcoming the limitations of nitrogen solubility in the steel melt during PBF-LB/M.

Keywords