Applied Sciences (May 2023)
Mechanistic Understanding on Difluoromethane Absorption Thermodynamics on Novel Deep Eutectic Solvents by COSMO-Based Molecular Simulation
Abstract
Hydrofluorocarbons (HFC) are fluorinated compounds used globally for refrigeration. These gases have been shown to contain a greenhouse potential of up to 22,000 times that of CO2. Thus, 1298 type-5 deep eutectic solvents (DES) were examined for the absorption and interaction mechanisms of difluoromethane (R32), due to their non-polar attributes. Of these solvents, quaternary ammonium salts mixed with various species of hydrogen bond donators (HBD) produced the most favorable interactions, with ln activity coefficients predicted to be as low as −1.39 at 1:1 compositional ratio. These DES were further studied for compositional analysis where pure tetrabutylammonium bromide showed the strongest interaction potential. The pressure study showed a linear solubility increase with a pressure increase reaching up to 86 mol/mol% in a methyltrioctylammonium bromide and polyethylene glycol mixture at 9 bar. The van der Waals interaction is the driving force of absorption with ~3x enthalpic release over hydrogen bonding. All chemicals contain strong potential for an environmentally friendly solution, as is evident through an environmental health and safety analysis.
Keywords