Lipids in Health and Disease (Sep 2018)
Stroke and dyslipidemia: clinical risk factors in the telestroke versus non-telestroke
Abstract
Abstract Background Clinical risk factors related to not administering thrombolysis to acute ischemic stroke patients with incidence dyslipidemia is not clear. This issue was investigated in telestroke and non-telestroke settings. Methods We analyzed retrospective data collected from a stroke registry to compare exclusion risk factors in the telestroke and non-telestroke. We performed multivariate analysis was performed to identify risk factors that may result in exclusion from rtPA. Variance inflation factors were used to examine multicollinearity and significant interactions between independent variables in the model, while Hosmer-Lemeshow test, Cox & Snell were used to determine the fitness of the regression models. Results A greater number of patients with acute ischemic stroke with incidence dyslipidemia were treated in the non-telestroke (285) when compared with the telestroke network (187). Although non-telestroke admitted more patients than the telestroke, the telestroke treated more patients with rtPA (89.30%) and excluded less (10.70%), while the non-telestroke excluded from rtPA (61.40%). In the non-telestroke, age (adjusted OR, 0.965; 95% CI, 0.942–0.99), blood glucose level (adjusted OR, 0.995; 95% CI, 0.99–0.999), international normalized ratio (adjusted OR, 0.154; 95% CI, 0.031–0.78),congestive heart failure(CHF) (adjusted OR, 0.318; 95% CI, 0.109–0.928), previous stroke (adjusted OR, 0.405; 95% CI, 0.2–0.821) and renal insufficiency (adjusted OR, 0.179; 95% CI, 0.035–0.908) were all directly linked to exclusion from rtPA. In the telestroke, only body mass index (adjusted OR, 0.911; 95% CI, 0.832–0.997) significantly excluded acute ischemic stroke patients with incidence dyslipidemia from thrombolysis therapy. Conclusion Despite having more patients with acute ischemic stroke that present incidence dyslipidemia, the non-telestroke patients had more clinical risk factors that excluded more patients from rtPA when compared with telestroke. Future studies should focus on how identified clinical risk factors can be managed to improve the use of rtPA in the non-telestroke setting. Moreover, the optimization of the risk-benefit ratio of rtPA by the telestroke technology can be advanced to the non-telestroke setting to improve the use of thrombolysis therapy.
Keywords