Notulae Botanicae Horti Agrobotanici Cluj-Napoca (Nov 2021)
Effects of temperatures on growth, physiological, and antioxidant characteristics in Houttuynia cordata
Abstract
Houttuynia cordata Thunb. (HC) is a traditional medicinal plant with a variety of pharmaceutical activities. The objective of this study was to investigate the growth, photosynthetic parameters, and antioxidant properties of HC plants in response to various temperatures. Pots of HC plants were maintained in day/night temperatures of 15/10 °C, 20/15 °C, 25/20 °C (control), 30/25 °C, and 35/30 °C for two months in each of five growth chambers having a 13.5 h photoperiod at 396, 432, 474, 449, and 619 µmol·m-2·s-1 radiation, respectively. Eight plants for each temperature were randomly placed in a growth chamber. HC plants survived at 30/25 °C and 35/30 °C treatments and had significantly higher plant heights, leaf numbers, and soil-plant analysis development (SPAD) and normalized difference vegetation index (NDVI) values compared to other treatments. However, long-term 35/30 °C treatment caused reductions in leaf length and width, significantly decreasing shoot and leaf fresh weight (FW) and dry weight (DW) compared to 30/25 °C treatment and controls. These results indicate that HC leaf development was affected during the 35/30 °C treatment, and that both SPAD and NDVI can help in advancing our understanding of the photosynthesis process in HC. Moreover, all plants subjected to 15/10 °C suffered more severely in all traits and parameters than other treatments. Therefore, HC plants tended to be heat-tolerant and exhibited adaptive morphologic plasticity to 30/25 °C conditions. Positive and significant correlations were observed among temperatures and total phenolics (TP), total flavonoids (TF), chlorogenic acid (CGA), and hyperoside (HO) content, and all bioactive contents increased as temperature increased, except that both CGA and HO content were remarkably decreased after 30/25 °C treatment. Thus, 30/25 °C treatment would be more beneficial for high marketability resulting from increased leaf number, DW, and all secondary metabolites compared to other treatments, and for use as a health food and for medicinal purposes. In addition, leaf growth, physiological parameters, and secondary metabolite accumulations in HC plants can be optimized for commercial production via temperature control technologies. This approach may also be applicable to leafy vegetables to produce stable industrial supplies having high leaf yields and metabolite content.
Keywords