Biologia Plantarum (May 2020)
Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings
Abstract
Heat stress is one of the most crucial factors affecting crop growth and productivity worldwide. So, searching for a potent eco-friendly heat stress alleviator is the main issue nowadays. The current study was conducted to assess the ameliorative effects of 1.5 mM potassium silicate (K2SiO3, further only Si) or 1.66 mM silicon dioxide nanoparticles (SiNPs) on wheat (Triticum aestivum L.) seedlings exposed to heat stress (45 °C, 4 h). The observations show that Si or SiNPs treatments significantly restored the heat stress-provoked ultrastructural distortions of cellular organelles, particularly chloroplasts and the nucleus. Further, both Si and SiNPs enhanced the photosynthetic capacity as revealed by increments in the photochemical efficiency of photosystem II and the performance index as well as the content of photosynthetic pigments. A reduction in malondialdehyde accumulation in Si and SiNPs treated plants was positively related to their membrane stability index. The reverse transcription PCR analysis showed that Si treatment but not SiNP treatment stimulated the overexpressions of both Triticum aestivum plasma membrane intrinsic protein (TaPIP1) and Triticum aestivum nodulin 26-like intrinsic protein (TaNIP2) aquaporin genes parallelly with an improvement in the relative water content. This investigation reveals that Si was more effective than SiNPs in restoring the heat stress injuries. To the best of our knowledge, this is the first investigation exploring the effects of Si and SiNPs in improving thermotolerance of wheat seedlings.
Keywords