Metals (Nov 2016)

Water Droplet Erosion Performance of Laser Shock Peened Ti-6Al-4V

  • Abdullahi K. Gujba,
  • Lloyd Hackel,
  • Mamoun Medraj

DOI
https://doi.org/10.3390/met6110262
Journal volume & issue
Vol. 6, no. 11
p. 262

Abstract

Read online

The water droplet erosion (WDE) performance of laser shock peened (LSP) Ti-6Al-4V was investigated. LSP condition using two or three peening impacts per unit area induced compressive residual stresses. However, LSP treatment showed a mild increase in microhardness and no observable changes in the microstructure. The effect of LSP and its associated attributes on the WDE performance was studied according to the American Society for Testing and Materials Standard (ASTM G73). Influence of the impact speed between 150 and 350 m/s on the WDE performance was explored. Two sample geometries, T-shaped flat and airfoil, were used for the WDE tests. For the flat samples, LSP showed little or no beneficial effect in enhancing the WDE performances at all tested speeds. The peened and unpeened flat samples showed similar erosion initiation and maximum erosion rate (ERmax). The LSP airfoil samples showed mild improvement in the WDE performance at 300 m/s during the advanced erosion stage compared to the as-machined (As-M) condition. However, at 350 m/s, no improved WDE performance was observed for the LSP airfoil condition at all stages of the erosion. It was concluded that compressive residual stresses alone are not enough to mitigate WDE. Hence, the notion that the fatigue mechanism is dominating in WDE damage is unlikely.

Keywords