International Journal of Pharmaceutics: X (Dec 2023)

Preparation and in vitro evaluation of hot-melt extruded pectin-based pellets containing ketoprofen for colon targeting

  • Sagar Narala,
  • Dinesh Nyavanandi,
  • Preethi Mandati,
  • Ahmed Adel Ali Youssef,
  • Abdullah Alzahrani,
  • Praveen Kolimi,
  • Feng Zhang,
  • Michael Repka

Journal volume & issue
Vol. 5
p. 100156

Abstract

Read online

This work developed high drug-load pellets for colon targeting in minimal steps by coupling hot-melt extrusion (HME) with a die-surface cutting pelletizer, offering a potential continuous pellet manufacturing process. Ketoprofen (KTP) was selected as a model drug for this study due to its thermal stability and severe upper gastrointestinal side effects. Low and high methoxyl grade pectins were the enzyme-triggered release matrix, and hydroxypropyl methylcellulose (HME 4 M/HME 100LV) was used as a premature release-retarding agent. The powder X-ray diffraction technique and the differential scanning calorimetry results revealed that KTP exists in the solid-solution state within the polymeric matrix after the HME step. The scanning electron micrographs of the fabricated pellets showed a smooth surface without any cracks. The lead formulation showed the lowest premature drug release (∼13%) with an extended KTP release profile over a 24 h period in the presence and absence of the release-triggering enzyme. The lead formulation was stable for 3 months at accelerated stability conditions (40 °C/75 ± 5% RH) concerning drug content, in vitro release, and thermal characteristics. In summary, coupling HME and pelletization processes could be a promising technology for developing colon-targeted drug delivery systems.

Keywords