PLoS ONE (Jan 2022)

Biodegradable microneedle patch for delivery of meloxicam for managing pain in cattle.

  • David A Castilla-Casadiego,
  • Katherine A Miranda-Muñoz,
  • Jesse L Roberts,
  • Anne D Crowell,
  • David Gonzalez-Nino,
  • Dipankar Choudhury,
  • Frank O Aparicio-Solis,
  • Shannon L Servoss,
  • Adrianne M Rosales,
  • Gary Prinz,
  • Min Zou,
  • Yuntao Zhang,
  • Johann F Coetzee,
  • Lauren F Greenlee,
  • Jeremy Powell,
  • Jorge Almodovar

DOI
https://doi.org/10.1371/journal.pone.0272169
Journal volume & issue
Vol. 17, no. 8
p. e0272169

Abstract

Read online

Microneedle patches are a promising source for transdermal diffusion of macromolecules and are designed to painlessly penetrate the skin. In this study, a biodegradable chitosan microneedle patch to deliver meloxicam for managing pain in cattle was tested. The potential of reuse of the polymeric solution to fabricate the patches, optimization of fabrication, morphological analysis of the microneedle patch and analysis of preservation of the chemical composition after sterilization were evaluated. In-vitro analysis consisted of studying in-vitro penetration mechanical properties, compression testing analysis of microneedle patch, and in-vitro drug release analysis. In-vivo studies were performed to analyze the dissolution capability of the microneedle patch. Results regarding the physical characteristics, chemical composition, and mechanical properties confirmed that rheological properties of the chitosan solution, present significant differences over time, demonstrating that reusing the solution on the fourth day results in failure patches. Morphological characteristics and chemical composition studies revealed that the process of sterilization (ethylene oxide gas) needed for implanting the patches into the skin did not affect the properties of microneedle patches. In-vitro studies showed that approximately 33.02 ± 3.88% of the meloxicam was released over 7 days. A full penetration of the microneedles into the skin can be obtained by applying approximately 3.2 N. In-vivo studies demonstrated that microneedle patches were capable of swelling and dissolving, exhibiting a dissolution percentage of more than 50% of the original height of microneedle after 7 days. No abnormal tissue, swelling, or inflammation was observed in the implanted area. The results of this work show that chitosan biodegradable microneedle patches may be useful to deliver meloxicam to improve pain management of cattle with positive effects for commercial manufacturing.