Antioxidants (Jan 2021)

Effects of Resvega on Inflammasome Activation in Conjunction with Dysfunctional Intracellular Clearance in Retinal Pigment Epithelial (RPE) Cells

  • Niina Bhattarai,
  • Niina Piippo,
  • Sofia Ranta-aho,
  • Yashavanthi Mysore,
  • Kai Kaarniranta,
  • Anu Kauppinen

DOI
https://doi.org/10.3390/antiox10010067
Journal volume & issue
Vol. 10, no. 1
p. 67

Abstract

Read online

Age-related macular degeneration (AMD) is an eye disease in which retinal pigment epithelium (RPE) cells play a crucial role in maintaining retinal homeostasis and photoreceptors’ functionality. During disease progression, there is increased inflammation with nucleotide-binding domain, leucine-rich repeat, and Pyrin domain 3 (NLRP3) inflammasome activation, oxidative stress, and impaired autophagy in RPE cells. Previously, we have shown that the dietary supplement Resvega reduces reactive oxygen species (ROS) production and induces autophagy in RPE cells. Here, we investigated the ability of Resvega to prevent NLRP3 inflammasome activation with impaired protein clearance in human RPE cells. Cell viability was measured using the lactate dehydrogenase (LDH) and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Enzyme-linked immunosorbent assays (ELISA) were utilized to determine the secretion of cytokines, NLRP3, and vascular endothelial growth factor (VEGF). Caspase-1 activity was measured with a fluorescent labeled inhibitor of caspase-1 (FLICA; FAM-YVAD-FMK) and detected microscopically. Resvega improved the cell membrane integrity, which was evident as reduced LDH leakage from cells. In addition, the caspase-1 activity and NLRP3 release were reduced, as was the secretion of two inflammatory cytokines, interleukin (IL)-1β and IL-8, in IL-1α-primed ARPE-19 cells. According to our results, Resvega can potentially reduce NLRP3 inflammasome-mediated inflammation in RPE cells with impaired protein clearance.

Keywords