Journal of Inequalities and Applications (Sep 2018)

Monotonicity of the number of positive entries in nonnegative matrix powers

  • Qimiao Xie

DOI
https://doi.org/10.1186/s13660-018-1833-5
Journal volume & issue
Vol. 2018, no. 1
pp. 1 – 5

Abstract

Read online

Abstract Let A be a nonnegative matrix of order n and f(A) $f(A)$ denote the number of positive entries in A. We prove that if f(A)≤3 $f(A)\leq3$ or f(A)≥n2−2n+2 $f(A)\geq n^{2}-2n+2$, then the sequence {f(Ak)}k=1∞ $\{f(A^{k})\}_{k=1}^{\infty}$ is monotonic for positive integers k.

Keywords