Environment International (Oct 2023)

Methods for virus recovery from environmental surfaces to monitor infectious viral contamination

  • Hajime Miyazaki,
  • Ryohei Hirose,
  • Mikako Ichikawa,
  • Hiroki Mukai,
  • Katsuma Yamauchi,
  • Takaaki Nakaya,
  • Yoshito Itoh

Journal volume & issue
Vol. 180
p. 108199

Abstract

Read online

Accurate quantification of infectious contaminants on environmental surfaces, particularly infectious viruses, is essential for contact transmission risk assessment; however, difficulties in recovering viruses from surfaces using swabs complicates this quantification process. Herein, we identified the factors that significantly affected virus recovery rates and developed an ideal swab method that yielded the highest rate of virus recovery. We comprehensively analyzed the effects of swab type (cotton/polyester), swab water content (wet/dry conditions), surface material, and surface area on the rates of viral RNA and infectious virus recovery.The virus recovery rate was significantly lower than the viral RNA recovery rate (P 0.8) with the target surface area. The maximum surface area where the virus recovery rate was ≥10% (MSA-10%) was identified as the maximum quantifiable area. For influenza virus recovery, MSA-10% on polyvinyl chloride (PVC) sheet, PVC leather, stainless steel, silicone, glass, and polycarbonate surfaces was 66.7, 193, 60.2, 144, 105, and 15.6 cm2, respectively. For feline calicivirus recovery, MSA-10% on PVC sheet, PVC leather, stainless steel, silicone, glass, and polycarbonate surfaces was 210, 111, 2120, 250, 322, and 180 cm2, respectively.The most accurate and ideal method for quantifying infectious viruses on environmental surfaces with the highest recovery rates meets three specifications: “wet conditions,” “the use of cotton swabs,” and “a target surface area of approximately 10 cm2.

Keywords