Applied Sciences (Jul 2025)
Integrated Haptic Feedback with Augmented Reality to Improve Pinching and Fine Moving of Objects
Abstract
Hand gestures are essential for interaction in augmented and virtual reality (AR/VR), allowing users to intuitively manipulate virtual objects and engage with human–machine interfaces (HMIs). Accurate gesture recognition is critical for effective task execution. However, users often encounter difficulties due to the lack of immediate and clear feedback from head-mounted displays (HMDs). Current tracking technologies cannot always guarantee reliable recognition, leaving users uncertain about whether their gestures have been successfully detected. To address this limitation, haptic feedback can play a key role by confirming gesture recognition and compensating for discrepancies between the visual perception of fingertip contact with virtual objects and the actual system recognition. The goal of this paper is to compare a simple vibrotactile ring with a full glove device and identify their possible improvements for a fundamental gesture like pinching and fine moving of objects using Microsoft HoloLens 2. Where the pinch action is considered an essential fine motor skill, augmented reality integrated with haptic feedback can be useful to notify the user of the recognition of the gestures and compensate for misaligned visual perception between the tracked fingertip with respect to virtual objects to determine better performance in terms of spatial precision. In our experiments, the participants’ median distance error using bare hands over all axes was 10.3 mm (interquartile range [IQR] = 13.1 mm) in a median time of 10.0 s (IQR = 4.0 s). While both haptic devices demonstrated improvement in participants precision with respect to the bare-hands case, participants achieved with the full glove median errors of 2.4 mm (IQR = 5.2) in a median time of 8.0 s (IQR = 6.0 s), and with the haptic rings they achieved even better performance with median errors of 2.0 mm (IQR = 2.0 mm) in an even better median time of only 6.0 s (IQR= 5.0 s). Our outcomes suggest that simple devices like the described haptic rings can be better than glove-like devices, offering better performance in terms of accuracy, execution time, and wearability. The haptic glove probably compromises hand and finger tracking with the Microsoft HoloLens 2.
Keywords