ISPRS International Journal of Geo-Information (Feb 2017)
A New GNSS Single-Epoch Ambiguity Resolution Method Based on Triple-Frequency Signals
Abstract
Fast and reliable ambiguity resolution (AR) has been a continuing challenge for real-time precise positioning based on dual-frequency Global Navigation Satellite Systems (GNSS) carrier phase observation. New GNSS systems (i.e., GPS modernization, BDS (BeiDou Navigation Satellite System), GLONASS (Global Navigation Satellite System), and Galileo) will provide multiple-frequency signals. The GNSS multiple-constellation and multiple-frequency signals are expected to bring great benefits to AR. A new GNSS single-epoch AR method for a short-range baseline based on triple-frequency signals is developed in this study. Different from most GNSS multiple-constellation AR methods, this technique takes advantage of the triple-frequency signals and robust estimation as much as possible. In this technique, the double difference (DD) AR of the triple-frequency observations is achieved in the first step. Second, the triple-frequency carrier phase observations with fixed ambiguities are used with the dual-frequency carrier phase observations to estimate their ambiguity. Finally, to realize reliable GNSS single-epoch AR, robust estimation is involved. The performance of the new technique is examined using 24 hours of GPS/GLONASS/BDS observation collected from a short-range baseline. The results show that single-epoch AR of the GNSS signals can be realized using this new technique. Moreover, the AR of BDS Geostationary Earth Orbit (GEO) satellites’ observations is easier than are those of the Medium Earth Orbit (MEO) and Inclined Geosynchronous Satellite Orbit (IGSO) satellites’ observations.
Keywords