Membranes (Jan 2022)

Polybenzimidazole Membrane Crosslinked with Epoxy-Containing Inorganic Networks for Organic Solvent Nanofiltration and Aqueous Nanofiltration under Extreme Basic Conditions

  • Jaewon Lee,
  • Hyeonmin Yang,
  • Tae-Hyun Bae

DOI
https://doi.org/10.3390/membranes12020140
Journal volume & issue
Vol. 12, no. 2
p. 140

Abstract

Read online

In this study, a novel polybenzimidazole (PBI)-based organic solvent nanofiltration (OSN) membrane possessing excellent stability under high pH condition was developed. To improve the chemical stability, the pristine PBI membrane was crosslinked with a silane precursor containing an epoxy end group. In detail, hydrolysis and condensation reaction of methoxysilane in the 3-glycidyloxypropyl trimethoxysilane (GPTMS) yields organic–inorganic networks within the PBI membrane structure. At the same time, the epoxy end groups on the organosiloxane network (Si–O–Si) reacted with amine groups of PBI to complete the crosslinking. The resulting crosslinked PBI membrane exhibited a good stability upon exposure to organic solvents and was not decomposed even in basic solution (pH 13). Our membrane showed an ethanol permeance of 27.74 LMHbar−1 together with a high eosin Y rejection of >90% under 10 bar operation pressure at room temperature. Furthermore, our PBI membrane was found to be operational even under an extremely basic condition, although the effective pore size was slightly enlarged due to the pore swelling effect. The results suggest that our membrane is a promising candidate for OSN application under basic conditions.

Keywords