Genome Medicine (May 2021)

Multi-tissue neocortical transcriptome-wide association study implicates 8 genes across 6 genomic loci in Alzheimer’s disease

  • Jake Gockley,
  • Kelsey S. Montgomery,
  • William L. Poehlman,
  • Jesse C. Wiley,
  • Yue Liu,
  • Ekaterina Gerasimov,
  • Anna K. Greenwood,
  • Solveig K. Sieberts,
  • Aliza P. Wingo,
  • Thomas S. Wingo,
  • Lara M. Mangravite,
  • Benjamin A. Logsdon

DOI
https://doi.org/10.1186/s13073-021-00890-2
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Alzheimer’s disease (AD) is an incurable neurodegenerative disease currently affecting 1.75% of the US population, with projected growth to 3.46% by 2050. Identifying common genetic variants driving differences in transcript expression that confer AD risk is necessary to elucidate AD mechanism and develop therapeutic interventions. We modify the FUSION transcriptome-wide association study (TWAS) pipeline to ingest gene expression values from multiple neocortical regions. Methods A combined dataset of 2003 genotypes clustered to 1000 Genomes individuals from Utah with Northern and Western European ancestry (CEU) was used to construct a training set of 790 genotypes paired to 888 RNASeq profiles from temporal cortex (TCX = 248), prefrontal cortex (FP = 50), inferior frontal gyrus (IFG = 41), superior temporal gyrus (STG = 34), parahippocampal cortex (PHG = 34), and dorsolateral prefrontal cortex (DLPFC = 461). Following within-tissue normalization and covariate adjustment, predictive weights to impute expression components based on a gene’s surrounding cis-variants were trained. The FUSION pipeline was modified to support input of pre-scaled expression values and support cross validation with a repeated measure design arising from the presence of multiple transcriptome samples from the same individual across different tissues. Results Cis-variant architecture alone was informative to train weights and impute expression for 6780 (49.67%) autosomal genes, the majority of which significantly correlated with gene expression; FDR < 5%: N = 6775 (99.92%), Bonferroni: N = 6716 (99.06%). Validation of weights in 515 matched genotype to RNASeq profiles from the CommonMind Consortium (CMC) was (72.14%) in DLPFC profiles. Association of imputed expression components from all 2003 genotype profiles yielded 8 genes significantly associated with AD (FDR < 0.05): APOC1, EED, CD2AP, CEACAM19, CLPTM1, MTCH2, TREM2, and KNOP1. Conclusions We provide evidence of cis-genetic variation conferring AD risk through 8 genes across six distinct genomic loci. Moreover, we provide expression weights for 6780 genes as a valuable resource to the community, which can be abstracted across the neocortex and a wide range of neuronal phenotypes.

Keywords