Atmospheric Measurement Techniques (Oct 2013)

Absorbing aerosol radiative effects in the limb-scatter viewing geometry

  • A. Wiacek,
  • R. V. Martin,
  • A. E. Bourassa,
  • N. D. Lloyd,
  • D. A. Degenstein

DOI
https://doi.org/10.5194/amt-6-2761-2013
Journal volume & issue
Vol. 6, no. 10
pp. 2761 – 2776

Abstract

Read online

The limb-scatter satellite viewing geometry is well suited to detecting low-concentration aerosols in the upper troposphere due to its long observation path length (~200 km), high vertical resolution (~1–2 km) and good geographic coverage. We use the fully three-dimensional radiative transfer code SASKTRAN to simulate the sensitivity of limb-scatter viewing Odin/OSIRIS satellite measurements to absorbing mineral dust and carbonaceous aerosols (smoke and pure soot), as well as to non-absorbing sulfate aerosols and ice in the upper troposphere. At long wavelengths (813 nm) the addition of all aerosols (except soot) to an air only atmosphere produced a radiance increase as compared to air only, on account of the low Rayleigh scattering in air only at 813 nm. The radiance reduction due to soot aerosol was negligible ( At short wavelengths (337, 377, 452 nm), we found that the addition of any aerosol species to an air only atmosphere caused a decrease in single-scattered radiation due to an extinction of Rayleigh scattering in the direction of OSIRIS. The reduction was clearly related to particle size first, with absorption responsible for second-order effects only. Multiple-scattered radiation could either increase or decrease in the presence of an aerosol species, depending both on particle size and absorption. Large scatterers (ice, mineral dust) all increased multiple-scattered radiation within, below and above the aerosol layer. Small, highly absorbing pure soot particles produced a negligible multiple-scattering response ( At short wavelengths, the combined effect of single scattering decreases and multiple scattering increases led to complex total radiance signatures that generally could not unambiguously distinguish absorbing versus non-absorbing aerosols. Smoke aerosols led to a total radiance decrease (as compared to air only) at all altitudes above the aerosol layer (15–100 km). This unique signature was a result of the aerosols' strong absorbing properties, non-negligible scattering efficiency, and number concentrations high enough to make multiple scattering effects due to the aerosol itself significant. Thus, in the limb-scatter viewing geometry scene darkening above the aerosol layer is unambiguously due to absorption whereas scene darkening within and below the aerosol layer can simply be the result of a reduction in single-scattered radiance. Our simulations show a greater scene darkening for decreasing wavelengths, increasing surface albedo, decreasing solar zenith angle, and increasing particle number concentration, however, at 337 nm this effect did not exceed 0.5% of the total radiance due to air only, making the unique identification of medium-sized carbonaceous aerosols, i.e., smoke, difficult. Scene darkening (or brightening) varies linearly with particle number concentration over three orders of magnitude. A fortuitous, unexpected implication of our analysis is that limb-scatter retrievals of aerosol extinction are not sensitive to external information about aerosol absorption.