Active Disturbance Rejection Control for the Trajectory Tracking of a Quadrotor
Mario Ramírez-Neria,
Alberto Luviano-Juárez,
Jaime González-Sierra,
Rodrigo Ramírez-Juárez,
Joaquín Aguerrebere,
Eduardo G. Hernandez-Martinez
Affiliations
Mario Ramírez-Neria
Institute of Applied Research and Technology, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Colonia Lomas de Santa Fe, Mexico City 01219, Mexico
Alberto Luviano-Juárez
Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. IPN 2580, Col. Barrio La Laguna Ticomán, Ciudad de México 07340, Mexico
Jaime González-Sierra
Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo, Instituto Politécnico Nacional, Carretera Pachuca—Actopan Kilómetro 1+500, Distrito de Educación, Salud, Ciencia, Tecnología e Innovación, San Agustín Tlaxiaca 42162, Mexico
Rodrigo Ramírez-Juárez
Facultad de Estudios Superiories Cuautitlán Campo 4, Universidad Nacionacional Autonoma de Mexico, Carretera Cuautitlán—Teoloyucán Kilómetro 2+500, San Sebastian Xhala, Cuautitlá Izcalli 54714, Mexico
Joaquín Aguerrebere
Institute of Applied Research and Technology, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Colonia Lomas de Santa Fe, Mexico City 01219, Mexico
Eduardo G. Hernandez-Martinez
Institute of Applied Research and Technology, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Colonia Lomas de Santa Fe, Mexico City 01219, Mexico
In the last decade, quadrotors have gained popularity among industry and academia due to their capabilities and the various applications in which they can be found. In addition to the above, because this is an underactuated system, researchers have found it a great challenge to control. Despite this, there is a wide variety of methodologies in the literature to control this type of system. Based on the above, this work proposed an alternative to trajectory tracking control for quadrotor unmanned aerial vehicles (UAV). The problem was divided into two main control loops: an outer control loop for the position coordinates, tackled through linear active disturbance rejection controllers (ADRC), and an inner control loop related to the orientation variables, addressed via robust proportional-integral-differential (PID) controllers. Furthermore, a generalized proportional integral observer (GPIO) was implemented to estimate the velocity and internal and external disturbances; therefore, the control strategy only depended on the attitude (position and orientation) quadrotor measurements. Then, the control performance was tested through numerical simulations and experimental tests, including wind disturbance inputs.