eLife (Jan 2022)

Respiratory alkalosis provokes spike-wave discharges in seizure-prone rats

  • Kathryn A Salvati,
  • George MPR Souza,
  • Adam C Lu,
  • Matthew L Ritger,
  • Patrice Guyenet,
  • Stephen B Abbott,
  • Mark P Beenhakker

DOI
https://doi.org/10.7554/eLife.72898
Journal volume & issue
Vol. 11

Abstract

Read online

Hyperventilation reliably provokes seizures in patients diagnosed with absence epilepsy. Despite this predictable patient response, the mechanisms that enable hyperventilation to powerfully activate absence seizure-generating circuits remain entirely unknown. By utilizing gas exchange manipulations and optogenetics in the WAG/Rij rat, an established rodent model of absence epilepsy, we demonstrate that absence seizures are highly sensitive to arterial carbon dioxide, suggesting that seizure-generating circuits are sensitive to pH. Moreover, hyperventilation consistently activated neurons within the intralaminar nuclei of the thalamus, a structure implicated in seizure generation. We show that intralaminar thalamus also contains pH-sensitive neurons. Collectively, these observations suggest that hyperventilation activates pH-sensitive neurons of the intralaminar nuclei to provoke absence seizures.

Keywords