Energies (Aug 2021)
Evaporation of Methanol Solution for a Methanol Steam Reforming System
Abstract
In a methanol-reforming system, because the mixture of methanol and water must be evaporated before reaching the reforming reaction zone, having an appropriate evaporator design is a fundamental requirement for completing the reforming reaction. This study investigates the effect of the evaporator design for the stable reforming of methanol–water mixtures. Four types of evaporator are compared at the same heat duty of the methanol-reforming system. The four evaporators are planar heat exchangers containing a microchannel structure, cylindrical shell-and-tube evaporators, zirconia balls for internal evaporation, and combinations of cylindrical shell-tubes and zirconia balls. The results show that the evaporator configuration is critical in performing stable reform reactions, especially for the flow-field mode of the evaporator. Additionally, the combination of both internal and external evaporation methods generates the highest performance for the methanol-reforming system, with the methanol conversion reaching almost 98%.
Keywords