Optimization of Corn Resistant Starch Preparation by Dual Enzymatic Modification Using Response Surface Methodology and Its Physicochemical Characterization
Yangjin Liu,
Fan Jiang,
Chunwei Du,
Mengqing Li,
Zhifu Leng,
Xiuzhu Yu,
Shuang-Kui Du
Affiliations
Yangjin Liu
Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Xianyang 712100, China
Fan Jiang
Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Xianyang 712100, China
Chunwei Du
Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Xianyang 712100, China
Mengqing Li
Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Xianyang 712100, China
Zhifu Leng
Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Xianyang 712100, China
Xiuzhu Yu
Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Xianyang 712100, China
Shuang-Kui Du
Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Xianyang 712100, China
Corn starch was dually modified using thermostable α-amylase and pullulanase to prepare resistant starch (RS). The concentration of starch liquid, the amount of added thermostable α-amylase, the duration of enzymatic hydrolysis and the amount of added pullulanase were optimized using RSM to increase RS content of the treated sample. The optimum pretreatment conditions were 15% starch liquid, 3 U/g thermostable α-amylase, 35 min of enzymatic hydrolysis and 8 U/g pullulanase. The maximum RS content of 10.75% was obtained, and this value was significantly higher than that of native corn starch. The degree of polymerization (DP) of the enzyme-modified starch decreased compared with that of native starch. The scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were performed to assess structural changes in native and pretreated starch. The effect of dual enzyme pretreatment on the structure and properties of corn starch was significant. Unlike the untreated one, the pretreated corn starch showed clear pores and cracks. Significant differences in RS contents and structural characterization between starch pretreated and untreated with dual enzymes demonstrated that the dual enzyme modification of corn was effective in enhancing RS contents.