Vestnik MGTU (Dec 2021)

Resistance change of contact groups of low-voltage electrical apparatus: Determining the laws

  • Gracheva E. I. ,
  • Gorlov A. N.,
  • Alimova A. N.,
  • Mukhanova P. P.

DOI
https://doi.org/10.21443/1560-9278-2021-24-4-350-360
Journal volume & issue
Vol. 24, no. 4
pp. 350 – 360

Abstract

Read online

The main Russian and foreign manufacturers of low-voltage electrical devices – circuit breakers, fuses, magnetic starters, knife switches and packet switches are presented. The data of experiments for determining the resistance values of contact groups of low-voltage switching equipment are considered. The design features of the devices that determine the value of the resistances of the power circuits of low-voltage equipment are investigated and a classification is proposed depending on the design elements of the devices. A methodological approach and an algorithm for experiments and detailed analysis of the contact groups of devices are given. Experimental schemes for the study of contact groups are proposed. The data of the conducted experiments on the study of contact groups and the resistance values as a function of the flowing currents are shown. During the experiments it is revealed that the value of the resistance of the contacts changes depending on the value, type and time of exposure to current within +/–5 %. The laws that characterize the ratio of the resistance values of the structural components of devices (contact systems, thermal relay, coil of the maximum relay) have been revealed and defined. Empirical expressions and graphical dependences of the resistances of contacts and contact systems are obtained as a function of the magnitude of the rated currents of low-voltage contact equipment. The minimum sample size of the number of devices during experimental research is determined, sufficient to calculate the mathematical expectation of the resistances of the contact connections of the devices with a given accuracy. As a result of experimental studies, it is revealed that the resistance value of contacts and contact joints can increase during operation by 2–2.5 times. The established dependences of the change in contact resistance can be used to predict the technical state of electrical installations of intrashop low-voltage networks, to clarify the amount of electricity losses in shop networks up to 1 kV, and can also be used as an additional regulation for maintenance and scheduled preventive maintenance.

Keywords