Frontiers in Genetics (Aug 2020)

Genomic Characteristics and Selection Signatures in Indigenous Chongming White Goat (Capra hircus)

  • Jun Gao,
  • Jun Gao,
  • Yuhua Lyu,
  • Defu Zhang,
  • Kiran Kumar Reddi,
  • Fengping Sun,
  • Jianzhong Yi,
  • Chengqian Liu,
  • Hong Li,
  • Huijuan Yao,
  • Jianjun Dai,
  • Fuyi Xu

DOI
https://doi.org/10.3389/fgene.2020.00901
Journal volume & issue
Vol. 11

Abstract

Read online

The Chongming white goat (CM) is an indigenous goat breed exhibits unique traits that are adapted to the local environment and artificial selection. By performing whole-genome re-sequencing, we generated 14–20× coverage sequences from 10 domestic goat breeds to explore the genomic characteristics and selection signatures of the CM breed. We identified a total of 23,508,551 single-nucleotide polymorphisms (SNPs) and 2,830,800 insertion–deletion mutations (indels) after read mapping and variant calling. We further specifically identified 1.2% SNPs (271,713) and 0.9% indels (24,843) unique to the CM breed in comparison with the other nine goat breeds. Missense (SIFT < 0.05), frameshift, splice-site, start-loss, stop-loss, and stop-gain variants were identified in 183 protein-coding genes of the CM breed. Of the 183, 36 genes, including AP4E1, FSHR, COL11A2, and DYSF, are involved in phenotype ontology terms related to the nervous system, short stature, and skeletal muscle morphology. Moreover, based on genome-wide FST and pooled heterozygosity (Hp) calculation, we further identified selection signature genes between the CM and the other nine goat breeds. These genes are significantly associated with the nervous system (C2CD3, DNAJB13, UCP2, ZMYND11, CEP126, SCAPER, and TSHR), growth (UCP2, UCP3, TSHR, FGFR1, ERLIN2, and ZNF703), and coat color (KITLG, ASIP, AHCY, RALY, and MC1R). Our results suggest that the CM breed may be differentiated from other goat breeds in terms of nervous system owing to natural or artificial selection. The whole-genome analysis provides an improved understanding of genetic diversity and trait exploration for this indigenous goat breed.

Keywords