Materials (May 2024)

An Experimental Parametric Optimisation for Laser Engraving and Texturing to Integrate Zirconia Ceramic Blocks into Stainless Steel Cutlery: A State-of-the-Art Aesthetically Improved Perspective

  • Vipin Richhariya,
  • Georgina Miranda,
  • Filipe Samuel Silva

DOI
https://doi.org/10.3390/ma17102452
Journal volume & issue
Vol. 17, no. 10
p. 2452

Abstract

Read online

Cutlery and flatware designs are an everchanging phenomenon of the manufacturing industry. Worldwide hospitality businesses demand perpetual evolution in terms of aesthetics, designs, patterns, colours, and materials due to customers’ demands, modernisation, and fierce competition. To thrive in this competitive market, modern fabrication techniques must be flexible, adoptive, fast, and cost effective. For decades, static designs and trademark patterns were achieved through moulds, limiting production to a single cutlery type per mould. However, with the advent of laser engraving and design systems, the whole business of cutlery production has been revolutionised. This study explores the possibility of creating diverse designs for stainless steel 304 flatware sets without changing the entire production process. The research analyses three key laser process parameters, power, scanning speed, and number of passes, and their impacts on the resulting geometry, depth of cut, surface roughness, and material removed. These parameters are comprehensively studied and analysed for steel and zirconia ceramic. The study details the effects of power, scanning speed, number of passages, and fluence on engraved geometry. Fluence (power*number of passages/scanning speed) positively influences outputs and presents a positive trend. Medium power settings and higher scanning speeds with the maximum number of passages produce high-quality, low-roughness optimised cavities with the ideal geometric accuracy for both materials.

Keywords