Agronomy (Aug 2024)

Transcriptomic Analysis of Alfalfa Flowering and the Dual Roles of <i>MsAP1</i> in Floral Organ Identity and Flowering Time

  • Xu Jiang,
  • Huiting Cui,
  • Zhen Wang,
  • Ruicai Long,
  • Qingchuan Yang,
  • Junmei Kang

DOI
https://doi.org/10.3390/agronomy14081741
Journal volume & issue
Vol. 14, no. 8
p. 1741

Abstract

Read online

Flowering, the transition from the vegetative to the reproductive stage, is vital for reproductive success, affecting forage quality, the yield of aboveground biomass, and seed production in alfalfa. To explore the transcriptomic profile of alfalfa flowering transition, we compared gene expression between shoot apices (SAs) at the vegetative stage and flower buds (FBs) at the reproductive stage by mRNA sequencing. A total of 3,409 DEGs were identified, and based on gene ontology (GO), 42.53% of the most enriched 15 processes were associated with plant reproduction, including growth phase transition and floral organ development. For the former category, 79.1% of DEGs showed higher expression levels in SA than FB, suggesting they were sequentially turned on and off at the two test stages. For the DEGs encoding the components of circadian rhythm, sugar metabolism, phytohormone signaling, and floral organ identity genes, 60.71% showed higher abundance in FB than SA. Among them, MsAP1, an APETALA1 (AP1) homolog of Arabidopsis thaliana, showed high expression in flower buds and co-expressed with genes related to flower organ development. Moreover, ectopic expression of MsAP1 in Arabidopsis resulted in dwarfism and early flowering under long-day conditions. The MsAP1-overexpression plant displayed morphological abnormalities including fused whorls, enlarged pistils, determinate inflorescence, and small pods. In addition, MsAP1 is localized in the nucleus and exhibits significant transcriptional activity. These findings revealed a transcriptional regulation network of alfalfa transition from juvenile phase to flowering and provided genetic evidence of the dual role of MsAP1 in flowering and floral organ development.

Keywords