BMC Pulmonary Medicine (Oct 2024)
Increased Lipocalin 2 detected by RNA sequencing regulates apoptosis and ferroptosis in COPD
Abstract
Abstract Background Chronic obstructive pulmonary disease (COPD) is a complex respiratory condition influenced by environmental and genetic factors. Using next-generation sequencing, we aimed to identify dysregulated genes and potential therapeutic targets for COPD. Methods Peripheral blood leukocyte RNA profiles from COPD patients and healthy controls were analyzed using next-generation sequencing. Key genes involved in COPD pathogenesis were identified through protein–protein interaction network analysis. In vitro, bronchial epithelial cells treated with cigarette smoke extract (CSE) were used to study the effects on gene expression, cell viability, apoptosis, and ferroptosis. Additionally, Lipocalin 2 (LCN2) inhibition experiments were conducted to elucidate its role in COPD-related cellular processes. Results Analysis of RNA profiles revealed consistent downregulation of 17 genes and upregulation of 21 genes across all COPD groups. Among these, Cathelicidin Antimicrobial Peptide(CAMP), Defensin Alpha 4(DEFA4), Neutrophil Elastase(ELANE), LCN2 and Lactotransferrin(LTF) were identified as potentially important players in COPD pathogenesis. Particularly, LCN2 exhibited a close association with COPD and was found to be involved in cellular processes. In vitro experiments demonstrated that CSE treatment significantly increased LCN2 expression in bronchial epithelial cells in a concentration-dependent manner. Moreover, CSE-induced apoptosis and ferroptosis were observed, along with alterations in cell viability, Glutathione content, Fe2 + accumulation, ROS: Reactive Oxygen Species and Malondialdehyde levels, Lactate Dehydrogenase(LDH) release and Glutathione Peroxidase 4(GPX4) expression. Inhibition of LCN2 expression partially reversed these effects, indicating the pivotal role of LCN2 in COPD-related cellular processes. Conclusion Our study identified six candidate genes: CAMP, DEFA4, ELANE, LCN2, and LTF were upregulated, HSPA1B was downregulated. Notably, LCN2 emerges as a significant biomarker in COPD pathogenesis, exerting its effects by promoting apoptosis and ferroptosis in bronchial epithelial cells.
Keywords