Plants (Jul 2023)

Salt-Induced Modulation of Ion Transport and PSII Photoprotection Determine the Salinity Tolerance of Amphidiploid Brassicas

  • Nisma Farooq,
  • Muhammad Omar Khan,
  • Muhammad Zaheer Ahmed,
  • Samia Fatima,
  • Muhammad Asif Nawaz,
  • Zainul Abideen,
  • Brent L. Nielsen,
  • Niaz Ahmad

DOI
https://doi.org/10.3390/plants12142590
Journal volume & issue
Vol. 12, no. 14
p. 2590

Abstract

Read online

Brassica species show varying levels of resistance to salt stress. To understand the genetics underlying these differential stress tolerance patterns in Brassicas, we exposed two widely cultivated amphidiploid Brassica species having different genomes, Brassica juncea (AABB, n = 18) and Brassica napus (AACC, n = 19), to elevated levels of NaCl concentration (300 mM, half the salinity of seawater). B. juncea produced more biomass, an increased chlorophyll content, and fewer accumulated sodium (Na+) and chloride (Cl−) ions in its photosynthesizing tissues. Chlorophyll fluorescence assays revealed that the reaction centers of PSII of B. juncea were more photoprotected and hence more active than those of B. napus under NaCl stress, which, in turn, resulted in a better PSII quantum efficiency, better utilization of photochemical energy with significantly reduced energy loss, and higher electron transport rates, even under stressful conditions. The expression of key genes responsible for salt tolerance (NHX1 and AVP1, which are nuclear-encoded) and photosynthesis (psbA, psaA, petB, and rbcL, which are chloroplast-encoded) were monitored for their genetic differences underlying stress tolerance. Under NaCl stress, the expression of NHX1, D1, and Rubisco increased several folds in B. juncea plants compared to B. napus, highlighting differences in genetics between these two Brassicas. The higher photosynthetic potential under stress suggests that B. juncea is a promising candidate for genetic modifications and its cultivation on marginal lands.

Keywords